Breast Cancer Characterization Based on Image Classification of Tissue Sections Visualized under Low Magnification

نویسندگان

  • Constantinos G. Loukas
  • Spiros Kostopoulos
  • Anna Tanoglidi
  • Dimitris Glotsos
  • Konstantinos Sfikas
  • Dionisis A. Cavouras
چکیده

Rapid assessment of tissue biopsies is a critical issue in modern histopathology. For breast cancer diagnosis, the shape of the nuclei and the architectural pattern of the tissue are evaluated under high and low magnifications, respectively. In this study, we focus on the development of a pattern classification system for the assessment of breast cancer images captured under low magnification (×10). Sixty-five regions of interest were selected from 60 images of breast cancer tissue sections. Texture analysis provided 30 textural features per image. Three different pattern recognition algorithms were employed (kNN, SVM, and PNN) for classifying the images into three malignancy grades: I-III. The classifiers were validated with leave-one-out (training) and cross-validation (testing) modes. The average discrimination efficiency of the kNN, SVM, and PNN classifiers in the training mode was close to 97%, 95%, and 97%, respectively, whereas in the test mode, the average classification accuracy achieved was 86%, 85%, and 90%, respectively. Assessment of breast cancer tissue sections could be applied in complex large-scale images using textural features and pattern classifiers. The proposed technique provides several benefits, such as speed of analysis and automation, and could potentially replace the laborious task of visual examination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas

Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar- and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal hyperplasia, ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (CA). To assess the correlation between computerized image analysis and visua...

متن کامل

Application of Different methods for Reducing Radiation Dose to Breast during MDCT

The increased use of computed tomography (CT) and its high radiation dose have led to great concerns about its potential for radiation induced cancer risks. Breast is a radiosensitive tissue based on tissue weighting factors assigned by the International Commission on Radiological Protection (ICRP). Moreover, the dose is maximal on the surface of the patient. Therefore, strategies should be tak...

متن کامل

Image processing for mitoses in sections of breast cancer: a feasibility study.

This paper describes an image analysis technique for the counting of nuclei in mitosis in tissue sections. Five experienced pathologists scored mitoses in photographs of preselected areas of tissue sections of the breast. Objects consistently labelled as mitotic cells by all five pathologists were considered "mitoses" in the analysis. In total, there were 45 mitotic nuclei, 68 possible mitotic ...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013